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Abstract 

Thin films of GaN, Al0.1Ga0.9N, and ZnO were ion implanted with chromium 

(Cr), manganese (Mn), and nickel (Ni) at 200 keV to produce dilute magnetic 

semiconductor materials.  Optical and magnetic techniques were used to evaluate crystal 

structure restoration and coercive field strength as a function of implant species and 

annealing temperature.  The results of cathodoluminescence measurements showed that 

near band edge transitions dominant in as-grown samples were dominated by other 

emissions after implantation.  The near band edge transitions returned to prominence in 

the properly annealed samples, and were reduced in prominence for over-annealed 

samples.  Magnetic impurity related emissions were observed in Al0.1Ga0.9N for Cr (3.3 

eV) and Mn (3.25 eV), and in ZnO for Ni (2.55 eV).  Maximum crystal restoration was 

obtained for Al0.1Ga0.9N implanted with Cr, Mn, or Ni after annealing at 675 oC for 5 

minutes; for the p-GaN implanted with Cr after annealing at 750 oC for 5 minutes; for the 

p-GaN implanted with Mn or Ni after annealing at 675 oC for 5 minutes; for the ZnO 

implanted with Cr after annealing at 700 oC for 10 minutes; for the ZnO implanted with 

Mn after annealing at 675 oC for 10 minutes; and for the ZnO implanted with Ni after 

annealing at 650 oC for 10 minutes.  Maximum coercive field strengths were found for 

the Al0.1Ga0.9N implanted with Cr after annealing at 750 oC for 5 minutes; for the 

Al0.1Ga0.9N implanted with Mn after annealing at 675 oC for 5 minutes; for the 

Al0.1Ga0.9N implanted with Ni after annealing at 700 oC for 5 minutes; for the p-GaN 

implanted with Cr or Mn after annealing at 725 oC for 5 minutes; for the p-GaN 
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implanted with Ni after annealing at 675 oC for 5 minutes; for the ZnO implanted with Cr 

or Ni after annealing at 725 oC for 10 minutes; and for the ZnO implanted with Mn after 

annealing at 725 oC for 10 minutes.  In general, the optimum annealing conditions for 

best optical and magnetic properties of the implanted wide band gap semiconductors 

agree with each other very well.
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OPTICAL INVESTIGATION OF TRANSITION METAL IMPLANTED 

WIDE BAND GAP SEMICONDUCTORS 

 

I. INTRODUCTION 

 Wide band gap semiconductors such as GaN, AlGaN, and ZnO are a major area 

of interest in the fields of physics and electrical engineering for their suitability to a wide 

variety of device applications.  One aspect of these materials which is important to the 

Department of Defense, particularly the Air Force, is the inherent resistance to radiation 

effects found in wide band gap semiconductor materials.  Research in this area will 

mature wide band gap semiconductor materials science, enabling the construction of 

electronic devices from these materials.  Making devices from these substances 

eliminates a vulnerability found in standard electronic systems, which reduces the need to 

shield against radiation threats or hostile environments such as high temperatures or 

cosmic radiation found in space.   

Since the bulk of the development of electronics has centered on traditional 

semiconductor materials such as silicon and gallium-arsenide, methods for producing 

electronic devices using these materials are well understood.  Years of research have 

gone into refining doping and annealing processes for use with these materials.  

Adjusting manufacturing processes to use wide band gap semiconductors requires that we 

repeat much of this basic research.   

Also of major interest to the military, is the evolution of spin transport electronics 

(spintronics).  This research could support the development of  a new class of spintronic 
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devices and circuits, including spin transistors, optical emitters with polarized output, 

magnetic sensors, magnetic random access memories, and quantum computing devices.  

While much work has been published recently concerning wide band gap 

semiconductors, there remain several areas of this basic research that have not been well 

studied to date.  This thesis will fill in some of these areas, specifically, it will address 

annealing temperatures and their effects on magnetic properties of transition metal 

implanted p-GaN, Al0.1Ga0.9N, and ZnO.  The transition metals being discussed are 

chromium, nickel, and manganese.   

Project Overview 

This project was carried out as underlying research in support of an ongoing 

dilute magnetic semiconductor research project being conducted by Capt Jeremy Raley to 

investigate high-temperature ferromagnetism in transition metal implanted wide band gap 

semiconductors.  A successful combination of annealing times and temperatures should 

maximize both crystal recovery and activation of ferromagnetic dopants in the resultant 

crystal.   

The focus of this work was to develop guidelines for annealing these materials 

with respect to both the recovery of the basic crystalline behavior of the semiconductors 

and the activation of ferromagnetic elements within them.  Secondary objectives included 

evaluating the potential of these material combinations, and reporting the research results 

including any previously unpublished properties discovered.    

Optical investigation of variously annealed samples was accomplished by taking 

cathodoluminescence spectra.  Data analysis for this project was based on these 
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measurements and magnetic hysteresis measurements, previously accomplished by 

Jeremy Raley using a superconducting quantum interference device (SQuID).  

 The following chapters will describe this project in detail, starting with an 

overview of some basic principles helpful in understanding the work.  Next, it will 

describe, in detail, the experimental procedures used in performing this research, 

including a discussion of the data analysis process.  The results will then be presented and 

discussed, including observed patterns in the data, ties between the optical and magnetic 

results, and an outline of areas of potential future work.   
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II. THEORY 
 

The following chapter outlines some theoretical principles useful in understanding 

the goals and methods of this project.  It addresses wide band gap semiconductors in 

general and the importance of crystal structure, including common processes used in 

fabricating devices.  This is followed by a brief introduction to important concepts in 

both optical and magnetic properties. 

Wide Band Gap Semiconductors 

A semiconductor exhibits a certain range of the absence of allowed electronic 

energy states at room temperature.  Semiconductors commonly used in microelectronics 

have a band gap of around 1 electron Volt (eV).  A general introduction to basic solid 

state physics and energy band behavior appears in Chapters 1 and 9 in McKelvey’s Solid 

State Physics. [1] 

What are wide band gap semiconductors? 

Materials with a larger gap in allowed energy states (between 2.5 and 4 eV) were 

formerly classed as insulators.  Increasing constraints on the allowable behavior and 

necessary properties of semiconductor electronics have sparked research into using 

different materials.  Recently the line between semiconductor and insulator has been 

pushed to about 4 eV to allow the class of wide band gap semiconductors.  These 

materials offer several innate advantages over classical semiconductors for many 

applications.  Thermal excitation of carriers has become a major concern in modern 

electronics, because as the thermal carriers begin to dominate the system, intentionally 

implanted areas of the semiconductor change their behavior. [2:522-524] 
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Why are they important? 

The most significant and pervasive problem with modern electronics is their 

vulnerability to excessive heat.  For many years the limiting factor of computer processor 

speed was the ability of the system to dissipate heat quickly enough for long term 

operation at higher switching speeds.  Each major improvement in technology or 

architecture that allowed less heat build-up in a computer chip has led directly to the next 

generation of faster processors.   

The mechanism causing a semiconductor to malfunction with overheating is 

thermal generation of carriers.  As temperature increases, more and more electrons can 

achieve enough energy to cross the band gap and become extraneous charge carriers.  

Smaller feature sizes and lower operating currents were two improvements in electronic 

circuits that reduced thermal generation.  These effects had a drawback however, in that 

while they reduced the magnitude of heat build up in a device, they also reduced the 

tolerance to leakage currents caused by extraneous carriers.  At sufficiently high 

temperatures, the thermally generated carriers will completely dominate any practical 

doping level of intentional carriers.[2:43]  This places strict limits on the operating 

temperature of any electronic device.  Using materials with a wider band gap 

dramatically reduces the generation of thermally excited carriers, increasing the heat 

tolerance of the device.    

Other mechanisms also increase unintentional carriers in a device.  Incident 

radiation from any source can also generate ions and trapped charges and can cause 

device failure.  Increasing the band gap reduces the effects of these problems as well. 

Wide band gap semiconductors also offer a broader range of physical 

characteristics than traditional semiconductor materials.  They are generally stronger, 
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harder to damage physically, and have higher melting points than classical 

semiconductors like silicon and gallium arsenide.  Wide band gap materials are usually 

transparent to visible light which provides significant advantages for applications such as 

solar blind radiation detectors.  Some of these materials offer highly controllable 

electrical properties.  Gallium nitride can exhibit room temperature resistivities from 18 

to 450 Ω-cm depending on doping level. [3]    Certain materials such as zinc oxide also 

allow significantly higher thermal conductivity at lower electrical conductivity than other 

semiconductor materials.[4]   

Crystal Structure 

As in any semiconductor, the uniform arrangement of atoms is the foundation for 

the predictable behavior of the material.  This, in turn, is essential for engineering devices 

to take advantage of the material.  In order to use new materials in electronic devices, it 

will be necessary to alter the composition of the material, without irreparably damaging 

the crystal structure.  In short, most of the damage done in implanting new atoms must be 

repaired.  

Ion Implantation 

The most easily controlled method for introducing dopant atoms into a 

semiconductor material is by ion implantation.  Charged atoms of the dopant species are 

ionized and electrically accelerated into the crystal substrate.  By varying the dose and 

implantation energy, this method can be used to produce virtually any desired doping 

profile.  This method is relatively inexpensive and easily patterned, but causes significant 

damage to the crystal structure of the substrate.  It is the most commonly used doping 

method for bulk crystal materials.[2:469-480] 
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Annealing 

In order to repair the damage caused by ion implantation, and/or to activate the 

dopant atoms causing them to behave as a part of the crystal, an implanted crystal 

substrate is usually annealed at a high temperature.  This process holds an increased level 

of vibrational energy within the crystal making it easier for atoms to break and form 

inter-atomic bonds, allowing natural inter-atomic interaction to shift the atoms back into 

a more regular physical arrangement. 

Time and temperature are the variable parameters of an annealing operation.  If a 

material is insufficiently annealed by using either too low a temperature, or an 

insufficient time, the damage to the crystal will not be repaired.  If a crystal is annealed at 

too high a temperature or for too long, additional damage may occur.[2:469-480]   

Proper times and temperatures for annealing are generally determined 

experimentally and refined for each specific substrate, dopant, and manufacturing 

process.  A major aim of this project is to determine annealing conditions for AlGaN, 

GaN, and ZnO doped with Cr, Mn, and Ni, that can be used as starting points for future 

experiments.  A proper anneal will activate the dopants, and recover the general crystal 

properties of the as-grown crystal. 

Optical Properties 

The quality of a semiconductor crystal can be measured by looking at the light 

output from the crystal when it is excited by an energy source.  This is called 

luminescence of the material.  There are many features present in emission spectra that 

are not discussed here and do not affect the work in this project.  For a more 
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comprehensive description of luminescence spectral features, see Bhattacharya’s 

Semiconductor Optoelectronic Devices, Chapter 3. [5:113-154] 

Light emission in crystals 

As electrons in a semiconductor relax from an excited state, energy is released 

equal to the difference between the energy levels of the excited state and the ground state.  

In a direct band gap material, the transition from the lowest energy states in the 

conduction band to the highest energy states in the valence band involves a large change 

in energy with minimal change in momentum.  This results in the generation of a photon.  

Statistically significant repeated transitions releasing photons of similar energy can be 

observed as light emission from the crystal surface, and results in a peak of light emission 

at a wavelength corresponding to that energy.[5:113-154]   

Band Edge Feature 

Good quality crystals exhibit emissions which are of predictable energies.  In 

undoped crystals of good quality, the vast majority of excited electrons will leave 

vacancies that relax to the top of the valence band.  These excited electrons generally 

relax through very fast non-radiative processes until they occupy energy states near the 

bottom of the conduction band just prior to radiative transition back to lower energy 

states near the top of the valence band.     

Because the arrangement of atoms in a perfect crystal is uniform, a good quality 

undoped semiconductor crystal can emit photons with energies at or just below the band 

gap.  Although in a perfect crystal, there are no allowed states within the gap, the 

electrons can transition radiatively to the vacancies in the valence band through excitonic 

emission with photon energies slightly below the band gap.  A real crystal will inevitably 

contain unintentional dopants or defects usually resulting in shallow energy states within 
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the band gap.  Thus the luminescence spectra of good quality undoped direct band gap 

crystals show dominant peaks very near band gap energies with no significant emission at 

other energies.[5:113-154]  These are called the band edge feature of the emission 

spectrum, and are the most significant feature present in as-grown material luminescence 

measurements. 

Impurity Emission Peaks 

A desirable feature of the emission spectrum in a implanted crystal is the presence 

of a peak within the band gap that corresponds to the dopant species interacting with the 

crystal itself.[5:113-154]  This will be an emission peak that is not present in the as 

grown material.  This peak must also not correspond to the energy of atomic transitions in 

the dopant species, because that would indicate luminescence from excited electrons of 

just the dopant atoms, and would not support the conclusion that the dopants are 

interacting with the crystal.  The location of these peaks may be important indicators of 

the electrical and optical behavior of the implanted crystal. 

Dislocation/Vacancy Emission 

Imperfections in the crystals result in emission at different energies than the band 

gap of the material or the impurity emission peak.  A well documented broad band 

emission called the yellow band occurs in GaN near 2.1 to 2.3 eV, which has been 

attributed to dislocations and other defects in the lattice structure.[6]  A similar band 

called the green band appears in ZnO around 2.3 to 2.5 eV.[7:643-646]  These emission 

bands are indicators of poor crystal recovery, and generally dominate as-implanted 

emission spectra.  These features will be reduced, in properly annealed crystals. 
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Crystal Recovery 

A combination of the first two previously discussed features is used to benchmark 

the crystal recovery of the crystal following ion implantation and subsequent annealing.  

The dominance of either the band edge emission or an impurity peak over other emission 

sources will indicate a well-recovered crystal. 

Magnetic Activation 

Just like any dopant introduced into a semiconductor crystal, the transition metals 

used in this project need to become part of the crystal and have their arrangement fixed 

within the crystal to behave predictably.  The main difference with these materials is that 

the desired interaction is not purely opto-electrical in nature.  It is possible that the best 

magnetic results for a material combination may be obtained with the impurities trapped 

interstitially within the crystal, instead of being incorporated into a lattice site.  If this is 

the case, the best hysteresis result will require different (probably lower temperature) 

annealing conditions than the best optical response.  In either case, it will generally be 

necessary for a material to undergo some kind of annealing process before the magnetic 

properties become active in the semiconductor.   

Hysteresis 

Hysteresis is the ability of a material to store a magnetically induced field.  This is 

the primary measure of the magnetic activation that is the focus of the overarching 

dissertation project.  Hysteresis is measured by alternately applying a strong positive and 

negative magnetic field and measuring the magnetic field at the sample.  A material 

exhibits a strong hysteresis effect if it holds a magnetic field with zero applied field after 

exposure.  Figure 1 is an example of a hysteresis measurement result showing. 
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Figure 1.  Hysteresis measurement example.  This diagram is a graphical 

representation of magnetism versus applied field, showing a magnetic 
hysteresis loop with coercive (H ) and remnant (B ) fields and saturation 
magnetization (M ) labeled.  

C R

S
    

Annealing effects on Hysteresis 

Annealing has a strong effect on the strength of a field induced by a reference 

field.  The strength of the hysteresis effect thus may sometimes be used as another 

indicator of crystal structure recovery.  It is also possible that interstitial impurities may 

have a strong hysteresis effect.  In this case, enough annealing to heal some of the crystal 

damage and trap the impurity atoms in place without being enough to incorporate the 

dopant into a crystal lattice site may provide the maximum measurable hysteresis. 
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Graphs showing preliminary measurements from Jeremy Raley’s work appear in 

the Appendix. 

Summary 

This chapter has introduced concepts important to understanding the work done in 

this project.  The following chapter contains detailed descriptions of the procedures used 

in each stage of the project.   
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III. Experiment 
 
This chapter details the procedures used throughout this project, from obtaining and 

preparing materials for testing, through testing procedures and equipment.  It includes a 

discussion of the data analysis process and leads the reader through this process for one 

material combination.   

Crystal Growth 

Crystal samples were obtained from sources outside AFIT.  A sapphire wafer with 

a 2 µm thick aluminum nitride (AlN) buffer layer, and a 1 µm thick epitaxial layer of p-

type gallium nitride (p-GaN) grown with 1017 Mg atoms/cm3 was ordered from Epiplus.  

Another sapphire wafer with a 2 µm thick buffer layer of AlN and a 1 µm thick epitaxial 

layer of 10% mole fraction aluminum gallium nitride (Al0.1Ga0.9N) was ordered from 

SVT associates.  A sapphire wafer with a 1 µm thick epitaxial layer of zinc oxide (ZnO) 

was grown by Rutgers University.  One wafer of each material was obtained, and diced 

into quarters which were used for different dopants.  Since one wafer is used for all 

testing of each material, various samples can be compared directly, minimizing errors due 

to variations in growth processes.       

Ion Implantation 

Three sections of each wafer were sent to Implant Sciences for ion implantation, 

with the fourth section of each saved as an as-grown control sample.  One section of each 

material was implanted with 5 x 1016 Cr atoms/cm2.  A second section of each material 

was implanted with 5 x 1016 Mn atoms/cm2.  The third section of each material was 

implanted with 3 x 1016 Ni atoms/cm2.  Implantation energy of 200 keV was used for 
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each implantation.  The sections were then returned to AFIT where they were diced into 

samples approximately 5 by 5 mm.   

Annealing 

Holding some samples of each material with each dopant for as-implanted 

measurements, samples were annealed for various times and temperatures.  All annealing 

operations were conducted using a small quartz tube furnace with actual furnace 

temperatures recorded every 15 seconds to maintain a history of the heating profile.  

There was relatively minor variation in time versus temperature profiles of the furnace 

indicating that variability in the annealing process is unlikely to be a source for error in 

this study.   

Annealing of ZnO was conducted in an oxygen rich environment, provided by 

flowing oxygen gas through the furnace tube throughout the annealing operation.  

Annealing of p-GaN and Al0.1Ga0.9N were conducted in a nitrogen rich environment by 

flowing 99.999% pure gaseous nitrogen through the furnace.  The gas rich environments 

were established to minimize out-gassing of the oxygen or nitrogen from the respective 

crystals.   

Superconducting Quantum Interference Device (SQuID) Measurement 

SQuID measurements analyzed for this project were taken from preliminary 

results obtained by Jeremy Raley.  This project used the single number reported for 

coercive field strength as a sole measure of magnetic effectiveness of the material for 

each annealing case. 
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Cathodoluminescence Measurement 

Cathodoluminescence (CL) is the process of exciting a material by adding energy 

in the form of a beam of accelerated electrons, causing the subsequent release of photons 

as electrons in the substance relax to their less energetic states.  A schematic diagram of 

the equipment configuration used for these measurements appears in Figure 2.   

For this study, CL was excited by a 10 keV electron beam at approximately 50 µA 

current provided by a Kimball Physics EMG-12 Electron Gun and EGPS-12 power 

supply.  The path between the beam source and the target, as well as the environment of 

the target, was held at a vacuum pressure of approximately 7 x 10-8 Torr.  The substrates 

were held at around 6 Kelvin using a cold head and a closed cycle helium compressor 

driven by a Lakeshore 330 Temperature Controller.   

Spectra were taken using a Spex 0.5 m monochromator and a liquid-nitrogen 

cooled (to -35 oC) GaAs Photomultiplier tube at 1500 V, connected to a personal 

computer (PC) to record the output and control the selected wavelengths of the 

monochromator.  The path between the target and monochromator is air with a glass door 

and two lenses to collimate and refocus the emitted light.  Extraneous light appears near 

700 nm in all measurements.  This noise is inherent in the system, and is believed to be 

due to warming of the cathode in the electron gun.  This limits the useable frequency 

range to below 680 nm.  
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Figure .  Schematic diagram of a cathodoluminescence system used to collect 
spectra.[8] 

 

Repeated measurements were taken for each case presented as the best anneal for 

a material/dopant combination.  Measurements were also repeated for cases 

demonstrating anomalous results. 

Sample Storage and Treatment 

Samples used in this study were stored in protective envelopes, in a humidity-

controlled environment (low humidity clean room or a plastic container, stored with 

moisture absorbing silica crystals).  They were handled with tweezers, marked for 
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identification purposes on the back side with a diamond scribe, and cleaned with acetone 

as necessary.   

Analyzing Data 

The primary data to be analyzed in this study was the luminescence spectra from 

the CL measurements.  Emission spectra were recorded for a range of annealing 

temperatures and visually inspected for the prominence of desirable features, and the 

reduction of undesirable emissions.   Ideally, a range of temperatures was tested for each 

material combination covering a discernable progression from lower temperature anneals, 

through the annealing condition giving the best results, to higher temperature anneals 

showing additional damage.  This validates the designation of a good annealing recipe by 

demonstrating that there is no improvement made going to either extreme in temperature.  

The following is an example outlining the process of analyzing a set of these 

spectra.  All spectra discussed in this example are graphed showing relative intensity, 

such that the highest feature on each spectrum reaches the approximate top of the graph.  

Figure 3 shows a typical measurement for as-grown Al0.1Ga0.9N.  The only 

significant feature of this spectrum is the prominent band edge feature.  This was used as 

an example to compare annealed cases against.  In Figure 4, the same material is shown 

after implantation.  The primary features in this graph are emissions due to undesirable 

sources such as crystal damage, and indicate ranges of emission that a good annealing 

recipe will reduce.  More importantly, the band-edge feature, which will be recovered 

with a good anneal, is not present in this measurement. 
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 Figure 3.  Cathodoluminescence spectrum of as-grown Al0.1Ga0.9N. 
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Figure 4.  Cathodoluminescence spectrum of Al0.1Ga0.9N implanted with nickel.   
Figure 5 is an under-annealed case.  Some improvement can be seen in the 

presence of a relatively small feature near the band edge, but the spectrum remains 
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dominated by emission in the ranges shown in the as-implanted measurement.  The best 

anneal found for this particular material is shown in Figure 6.  The band edge is once 

again prominent in the spectrum, and while it is not shown in this example, there may be 

new features noticeable at this point that can be attributed to the dopant species 

interacting with the crystal structure.  Figure 7 shows an over-annealed case in which the 

areas of the spectrum shown to be due to poor crystal properties are once again 

dominating emission from the sample.  

 If an impurity peak is noticed in the well-annealed cases for a material, it must be 

checked against other potential causes of the emission to increase confidence that it is due 

to proper interaction between the dopant and the crystal.  One important source to check 

is the simple atomic emission of the dopant species.  Since care is taken to ensure that 

other atoms are not introduced into these samples and most other possible emission 

sources would show up in as-grown measurements, it is reasonable to conclude that any 

peaks would be due in some way to the dopant atoms.  Table 1 shows the known atomic 

spectral lines of the dopant species used in this study. 

Table 1.  Atomic Emission Lines of Transition Metal Species.  (Bold entries denote 
strong emission lines.) [9] 

Chromium manganese nickel 
Wavelength(nm) Energy(eV) Wavelength(nm) Energy(eV) Wavelength(nm) Energy(eV)

425.435 
357.869 
359.349 
360.533 
427.480 
428.972 
520.844 

2.914 
3.465 
3.450 
3.439 
2.900 
2.890 
2.380 

403.076 
257.610 
279.482 
279.827 
403.307 
403.449 

3.076 
4.813 
4.436 
4.431 
3.074 
3.073 

341.476 
352.454 
232.003 
349.296 
351.505 
361.939 

3.631 
3.518 
5.344 
3.550 
5.527 
3.426 

 20



 

 21

2.0 2.5 3.0 3.5 4.0

Al0.1Ga0.9N:Ni, Implant: 200 keV, 3x1016/cm2

CL at 6 K, e-beam: 10 keV, 50 µA
annealed 650 oC, 5 min, under-annealed case

In
te

ns
ity

 in
 a

rb
itr

ar
y 

un
its

Energy in eV

700 600 500 400 300
 Wavelength in nm

 

Figure 5.  Cathodoluminescence spectrum of Al0.1Ga0.9N implanted with nickel 
and annealed for 5 minutes at 650 oC.  
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Figure 6.  Cathodoluminescence spectrum of Al0.1Ga0.9N implanted with nickel 

and annealed for 5 minutes at 675 oC.   
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Figure 7.  Cathodoluminescence spectrum of Al0.1Ga0.9N implanted with nickel and 

annealed for 5 minutes at 750 oC.  
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 The other piece of information analyzed for this study was the coercive field 

strength exhibited by the samples after each anneal.  The same pattern was seen in these 

results as with the emission spectra.  To ensure that the best anneal was obtained, a 

coercive field strength was sought which was higher than values for both lower and 

higher temperature anneals. 

Summary 

This chapter has detailed the procedures and equipment used in this project, both 

in processing samples, and taking measurements.  It has also outlined the process by 

which data is analyzed and determinations are made of anneal quality.  The following 

chapter will present and discuss the measurement results. 
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IV. Results and Discussion 
 

This chapter presents the data obtained in this project.  Graphs are displayed in a 

more standard format showing multiple spectra for the same material on each graph.  The 

data is interpreted for each case, presenting the best result both optically and magnetically 

for each material/dopant combination. 

Al0.1Ga0.9N 

Figure 8 shows CL spectra for a Al0.1Ga0.9N as-grown, as-implanted with Cr, and 

annealed at various temperatures.  As can be seen in the graph, the optically determined 

best anneal was 675 oC for 5 min.  The quality of the spectrum drops off at higher anneal 

temperatures.  The band edge feature near 3.75 eV is prominent in the as grown and best 

anneal cases.  The yellow luminescence common to GaN based materials is evident in the 

annealed spectra.  This feature completely dominates the spectra from samples annealed 

at higher temperatures.  The feature present near 3.35 eV in the 700 oC anneal line was 

due to an extraneous light source in the lab, and is not from the sample.  

The center of the band-edge feature is consistent with the expected donor bound 

exciton peak position for Al0.1Ga0.9N, leading to the conclusion that the Al mole fraction 

of 33% indicated by the grower was incorrect.  The corrected value has been reported 

throughout this paper.[10:46]  Another impurity emission peak appears at about 3.3 eV 

which can be attributed to donor-acceptor pair transitions.  Judging magnetically, the 

strongest coercive field (best result) for this material was found at 750 oC but with very 

little variation above 700 oC.  
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Figure 8.  Cathodoluminescence spectra of Al0.1Ga0.9N:Cr as a function of 

annealing temperature.  Spectra are shown from a 1 µm layer of 
Al0.1Ga0.9N grown on a 2 µm AlN buffer layer, grown on sapphire, doped 
with chromium and annealed at the temperatures indicated. 
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Figure 9 shows CL results for Al0.1Ga0.9N as-grown, as-implanted with Mn, and 

annealed at various temperatures.  As before, the donor bound exciton peak appears near 

3.75 eV consistent with Al0.1Ga0.9N, and the yellow luminescence is present in all but the 

as-grown case.  Optically determined, the best anneal was at 675 oC for 5 min for this 

dopant with significant damage shown in higher temperature anneals by the increasing 

dominance of the yellow luminescence.  Another impurity peak was present near 3.25 

eV.  The same anneal proved best magnetically as well, showing marked improvements 

over all higher anneal temperatures tested. 

Figure 10 shows CL data for Al0.1Ga0.9N as-grown, as-implanted with Ni, and 

annealed at various temperatures.  The donor bound exciton peak was still consistent with 

Al Ga N at around 3.75 eV.  Once again, the optically determined best anneal was at 

675 C for 5 min, this time showing no yellow luminescence.  In this case there was no 

apparent impurity emission in the range of the measurement and there were worse spectra 

for cases at both higher and lower anneal temperatures.  The magnetically determined 

best anneal was 700 C for 5 minutes, with worse measurements for both lower and 

higher anneal temperatures.  This coercive field strength was comparable with that found 

with the optical best anneal case. 

0.1 0.9

o

o

p-GaN 

Figure 11 depicts CL spectra for p-GaN as-grown, as-implanted with Cr, and 

annealed at various temperatures.  The band edge feature is near 3.6 eV which is at higher 

energy than that expected for an excitonic transition in GaN of just under 3.5 eV.  This 

indicates the possibility that the luminescence is being detected from the AlN buffer  
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Figure 9.  Cathodoluminescence spectra of Al0.1Ga0.9N:Mn as a function of 

annealing temperature.  Spectra are shown from a 1 µm layer of 
Al0.1Ga0.9N grown on a 2 µm AlN buffer layer, grown on sapphire, doped 
with manganese and annealed at the temperatures indicated. 
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Figure 10.  Cathodoluminescence spectra of Al0.1Ga0.9N:Ni as a function of 
annealing temperature.  Spectra are shown from a 1 µm layer of 
Al0.1Ga0.9N grown on a 2 µm AlN buffer layer, grown on sapphire, doped 
with nickel and annealed at the temperatures indicated. 
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Figure 11.  Cathodoluminescence spectra of p-GaN:Cr as a function of annealing 

temperature.  Spectra are shown from a 1 µm layer of GaN:Mg (1017/cm3 
Mg) grown on a 2 µm AlN buffer layer, grown on sapphire, doped with 
chromium and annealed at the temperatures indicated. 
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layer.[11]   Optically, the best anneal was 750 oC for 5 min with significantly poorer 

results at lower temperatures.  The poor quality of even this best case implies that the best 

annealing condition is likely at an even higher temperature.  A prominent peak is present 

at 3.2 eV, but since this peak is also present in the as-implanted spectrum, it is probably 

not a valid impurity emission.  Magnetically, the best case was an anneal of 725 oC for 5 

min, with weaker coercive fields at both lower and higher temperatures.  

Figure 12 shows CL spectra for p-GaN as-grown, and annealed at various 

temperatures after implantation with Mn.  The well-annealed samples clearly show a 

donor bound exciton peak at just below 3.5 eV as well as a donor acceptor pair peak near 

3.25 eV with two optical phonon replicas.[11]  This is a close fit to the expected values 

for GaN.  Luminescence near 2.5 eV is also present these samples.  It has been suggested 

that this is attributable to a donor-Mn acceptor pair transitions, and is not the typically 

observed yellow luminescence. [12]   

The best anneal was at 675 oC for 5 min as determined optically, with comparable 

results when annealed at 750 oC, and worse results at anneal temperatures between these 

values.  Magnetically, the best anneal was 725 oC for 5 min, with significantly weaker 

coercive fields at lower anneal temperatures and comparable results when annealed at 

750 oC.   

Figure 13 shows CL spectra for p-GaN as-grown, as-implanted with Ni, and 

annealed at various temperatures.  Once again higher than expected energies were found 

as a band gap feature.  Optically, the best anneal was found at 675 oC for 5 min, with 

worse results at both higher and lower anneal temperatures.  A donor acceptor pair peak  
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Figure 12.  Cathodoluminescence spectra of p-GaN:Mn as a function of annealing 

temperature.  Spectra are shown from a 1 µm layer of  GaN:Mg (1017/cm3 
Mg) grown on a 2 µm AlN buffer layer, grown on sapphire, doped with 
manganese and annealed at the temperatures indicated. 
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Figure 13.  Cathodoluminescence spectra of p-GaN:Ni as a function of annealing 

temperature.  Spectra are shown from a 1 µm layer of  GaN:Mg (1017/cm3 
Mg) grown on a 2 µm AlN buffer layer, grown on sapphire, doped with 
nickel and annealed at the temperatures indicated. 
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was noted at 3.25 eV.  Magnetically, 675 oC for 5 minutes was by far the best anneal, also 

with worse results on both anneal temperature extremes.   

ZnO 

Figure 14 shows CL spectra for ZnO as-grown, as-implanted with Cr, and 

annealed at various temperatures.  The band edge feature near 3.3 eV is attributed to 

bound exciton transitions, this may also be the merging of donor and acceptor bound 

exciton peaks.[13]  Optically, the best anneal was 700 oC for 10 min.  Other than 

intensity of the band edge feature, there is no significant change in the quality of the 

anneal at any anneal temperature over 650 oC.  Magnetically, the best case was the anneal 

of 725 oC for 10 min, with lower coercive field strengths at both lower and higher anneal  

temperatures, but comparable measurements when annealed at any temperature from 675 

to 725 oC.  

Figure 15 shows CL spectra for ZnO as-grown, as-implanted with Mn, and 

annealed at various temperatures.  The same exciton peak observed in ZnO:Cr is present 

near 3.3 eV.  The best anneal for optical properties was at 675 oC for 10 min, with 

comparable results at all anneal temperatures from 675 to 725 oC.  Magnetically, the best 

anneal was 700 oC for 10 min, with weaker coercive fields at both lower and higher 

anneal temperatures, but comparable measurements when annealed from 675 to 725 oC.  

Figure 16 displays CL spectra for ZnO as-grown, as-implanted with Ni, and 

annealed at various temperatures.  Once again, the exciton peak is apparent at 3.3 eV.  

From the spectra, the best anneal was 650 oC for 10 min.  A broad emission near 2.55 eV 

was observed that may be the documented green luminescence common to ZnO.  Since  
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Figure 14.  Cathodoluminescence spectra of ZnO:Cr as a function of annealing 

temperature. Spectra are shown from a 1 µm layer of  ZnO grown on 
sapphire, doped with chromium and annealed at the temperatures 
indicated. 
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Figure 15.  Cathodoluminescence spectra of ZnO:Mn as a function of annealing 

temperature.  Spectra are shown from a 1 µm layer of  ZnO grown on 
sapphire, doped with manganese and annealed at the temperatures 
indicated. 
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Figure 16.  Cathodoluminescence spectra of ZnO:Ni as a function of annealing 

temperature.  Spectra are shown from a 1 µm layer of  ZnO grown on 
sapphire, doped with nickel and annealed at the temperatures indicated. 
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this feature has not been common to these samples, it is possible that it is actually an 

impurity-related peak.   For magnetic properties, 725 oC for 10 min was the best anneal 

with comparable results when annealed at 675 oC and significantly weaker coercive fields 

when annealed at higher temperatures. 

Summary 

This chapter has presented the results obtained in taking measurements for this 

project.  It has interpreted these results for each material/dopant combination according to 

both optical and magnetic criteria.  The following chapter will provide an overview of 

what was accomplished in this project, as well as present a more concise description of 

the most significant results observed.  Finally, it will point out future related work, and 

discuss the progress made. 
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V. Conclusions and Recommendations 
 

This primary objective of this research was to investigate the effects of annealing 

temperatures on the optical and magnetic properties of transition-metal doped wide band 

gap semiconductors.  For this purpose 1 µm thick films of Al0.1Ga0.9N, magnesium doped 

p-GaN, and ZnO grown on sapphire were implanted at 200 keV with 5 × 1016 cm-2 

chromium or manganese, or 3 × 1016 cm-2 nickel, and investigated both optically by 

cathodoluminescence, and magnetically by superconducting quantum interference device 

(SQuID) measurements.  The goal was to work toward developing room temperature 

dilute magnetic semiconductors. 

Optimal annealing temperatures were determined separately for optical and 

magnetic purposes to within 25 oC for each material combination, with trends noted, and 

material properties reported as applicable.  

The results of cathodoluminescence measurements demonstrated a pattern by 

which transitions near the band edge dominate the spectra in as-grown samples, then are 

in turn dominated by other emissions after implantation.  These band edge features are 

gradually returned to prominence in the annealed samples, reaching a maximum in the 

best annealed cases, and finally reduced in prominence in cases of over-annealing. 

The cathodoluminescence spectra show that for Al0.1Ga0.9N, a possible magnetic 

impurity related peak appears near 3.3 eV when implanted with Cr, and near 3.25 eV 

when implanted with Mn.  These results also show an apparent magnetic impurity related 

peak in ZnO near 2.55 eV when implanted with Ni. 

Manganese-implanted Al0.1Ga0.9N annealed at 675 oC and nickel implanted p-

GaN annealed at 675 oC both demonstrated the best crystal recovery and optimum 
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magnetic response under the same annealing conditions.  For this reason they are the 

most promising combinations of materials and annealing recipes tested. 

Also of major interest were those combinations which, while not showing a 

perfect match with the same anneal giving the optimum results by both measures, exhibit 

an annealing case or cases with favorable results in both tests.  However, chromium 

implanted Al0.1Ga0.9N and chromium implanted p-GaN showed no overlap between 

favorable results by these two measurements. 

All of these material combinations showed at least one annealing recipe that 

provided good hysteresis results, and at least one case with a promising optical anneal.  

They may all be useful in one field or the other, only for applications that need both 

qualities should investigations be limited to the more promising materials as presented 

here. 

There are several suggestions for continuing research efforts in this area.  First, 

this study was limited in its range of temperatures investigated.  Further work could be 

done by extending the limits of the study for all materials in which the best anneal was 

found to be at 650 oC on the low end, and 750 oC on the high end.  Further investigation 

could also refine these results by narrowing the temperature increments, and by exploring 

longer anneal times for all cases.   

For materials found to be promising both magnetically and optically, there is 

much more work to be done.  The materials would need to be tested at room temperature 

both optically and magnetically, to ensure that the observed behavior will lend itself to a 

useable device.  Another significant step in this research is to investigate the effect, if any 

of a stored field on the optical response of the material.  Specifically, it is suspected that 

there may be a useable broadening of impurity emissions with a stored field.   
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Progress was made during this project toward the development of room 

temperature dilute magnetic semiconductors.  Material combinations were evaluated for 

suitability for this type of work.  Annealing temperatures were investigated, providing 

guidance for future researchers to begin their work in this area.  Finally, the knowledge 

base for wide band gap semiconductors was increased, allowing an incremental step 

toward bringing wide band gap semiconductor development to a par with traditional 

semiconductor technology. 
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Appendix:  Preliminary Hysteresis Measurement Results 

Charts of coercive field strength of each material at each annealing condition: 
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Coercive Field Strength as a Function of Annealing Temperature
(SQUID measurements at 5 K unless otherwise noted)
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Coercive Field Strength as a Function of Annealing Temperature
(SQUID measurements at 5 K unless otherwise noted)
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Coercive Field Strength as a Function of Annealing Temperature
(SQUID measurements at 5 K unless otherwise noted)
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Coercive Field Strength as a Function of Annealing Temperature
(SQUID measurements at 5 K unless otherwise noted)
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